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Background: Even though commercial nucleic acid amplification tests (NAATs) have become the most
frequently used molecular tests for laboratory diagnosis of pulmonary tuberculosis (TB), published studies
report variable estimates of their diagnostic accuracy. We analysed the accuracy of commercial NAATs
for the diagnosis of pulmonary TB in smear positive and smear negative respiratory samples using culture
as a reference standard.
Methods: English language studies reporting data sufficient for calculating sensitivity and specificity of
commercial NAATs on smear positive and/or smear negative respiratory samples were included. Meta-
regression was used to analyse associations with reference test quality, the prevalence of TB, sample and
test type. Predictive values for different levels of pre-test probability were quantified using Bayes’
approach.
Results: Sixty three journal articles published between 1995 and 2004 met the inclusion criteria. Pooled
sensitivity and specificity were 0.96 and 0.85 among smear positive samples and 0.66 and 0.98 among
smear negative samples. The number of culture media used as reference test, the inclusion of bronchial
samples, and the TB prevalence were found to influence the reported accuracy. The test type had no effect
on the diagnostic odds ratio but seemed to be correlated with sensitivity or specificity, probably via a
threshold effect.
Conclusions: Commercial NAATs can be confidently used to exclude TB in patients with smear positive
samples in which environmental mycobacteria infection is suspected and to confirm TB in a proportion of
smear negative cases. The methodological characteristics of primary studies have a considerable effect on
the reported diagnostic accuracy.

I
n spite of their theoretical ability to detect even a single
mycobacterial cell, nucleic acid amplification tests (NAATs)
are not sufficiently reliable to replace conventional

diagnostic methods for pulmonary tuberculosis (TB). Both
inherent test characteristics and errors in testing procedures
may account for their inaccuracy.1 As for microscopy and
culture, the key factor in determining NAAT false negatives is
the density of mycobacteria in the specimen, since it can
result in the absence of organisms in the small volumes
sampled for the test. Furthermore, the presence in respiratory
secretions of enzymes capable of inhibiting amplification
reactions accounts for an additional 3–25% of false negative
results.2 On the other hand, false positive results arise most
often from contamination of negative samples with either
organisms or target DNA from samples containing large
numbers of mycobacteria or from amplicons contaminating
the laboratory room.2 3

To overcome these problems, automated commercial
systems were developed which were made more robust by
the use of standardised procedures and reagents for sample
processing, amplification, and detection. These procedures,
which allow different steps of the process to take place in a
single sealed tube, were intended to reduce the risk of
contamination. At the same time, the use of larger sample
volumes or the introduction of internal amplification controls
to detect inhibitors was adopted to cut down the rate of false
negative results.

Notwithstanding these precautionary measures, published
studies show a considerable heterogeneity in the results
obtained with commercial NAATs. The US Centers for
Disease Control (CDC) recommend that commercial NAATs

be used with microscopy to improve diagnostic certainty
(pending culture results and/or patient’s response to treat-
ment) and that clinicians should rely on their clinical
judgement in the interpretation of results. According to the
CDC, the diagnosis of pulmonary TB can be presumed in
smear positive (acid-fast bacilli (AFB)+) patients with a
positive NAAT result and in smear negative (AFB2) patients
with two subsequent positive NAAT results. Environmental
mycobacterial disease can be hypothesised when a negative
NAAT result is obtained from an AFB+ and inhibitor-free
sample while, as about 20% of TB cases can be attributed to
infection by AFB2 patients,4 two negative NAAT results from
two separate AFB2 samples are needed to exclude con-
tagiousness.5

Two previous meta-analyses on the accuracy of NAATs for
the diagnosis of pulmonary TB, analysing mostly home
grown polymerase chain reaction (PCR) based tests, found a
substantial variability in both sensitivity and specificity due
to the different threshold set by each investigator and to
differences in study design and quality.6 7 To our knowledge,
the diagnostic accuracy of commercial NAATs separately on
both AFB+ and AFB2 respiratory samples has never been
systematically reviewed. This study was undertaken to assess
the performance of NAATs in the context of a careful analysis
of the impact of the type of test as well as of the
methodological and clinical characteristics of published
studies on the accuracy estimates.

Abbreviations: AFB, acid-fast bacilli; DOR, diagnostic odds ratio; MTB,
Mycobacterium tuberculosis; NAAT, nucleic acid amplification test; TB,
tuberculosis
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METHODS
We searched Medline to 1 July 2005 and Embase to 1 March
2005 using a search strategy designed to identify studies
evaluating the use of commercial NAATs for the diagnosis of
pulmonary TB. The titles and abstracts of the identified
citations were screened and the references listed in the
retrieved articles were scrutinised, considering any citation
that did not obviously fail the inclusion criteria.

After a preliminary analysis of a sample of articles, studies
considered eligible for inclusion in our meta-analysis were
those that:

(1) examined the diagnostic performance of commercial
NAATs on respiratory samples (,5% of non-respiratory
samples were tolerated);

(2) used Mycobacterium tuberculosis (MTB) culture of the same
sample as the reference standard for the diagnosis of
pulmonary TB;

(3) reported primary data sufficient for separately calculating
both sensitivity and specificity in AFB+ and/or AFB2

specimens; and

(4) were written in English.

Articles were excluded from the meta-analysis for the
following reasons:

(1) reporting sensitivity and specificity ‘‘revised’’ by means of
discrepant analysis as the only study results; in the case
of studies which retested the samples on the basis of
discrepant analysis, only the initial ‘‘unrevised’’ results
were considered;

(2) possible duplicate publication: when an author or
research group published more than one study, the
existence of overlapping study populations was ascer-
tained by checking sample recruitment sites and/or
periods or, if these were not available, contacting authors
for clarification. If this was not provided, only the article
reporting the largest number of samples was included;

(3) application of commercial NAATs on gastric aspirates
(.5% of total study sample); and

(4) analysis of previous versions of commercial NAATs.

Two investigators independently evaluated studies for
inclusion and abstracted relevant data. Disagreements were
reconciled by consensus.

Data extraction and quality assessment
Data were abstracted using two separate data sheets, one for
AFB+ and one for AFB2 samples. Information recorded were
descriptive data (author name, journal, publication year),
type of respiratory sample, prevalence of MTB culture positive
samples, testing procedures for commercial NAATs, culture
and AFB staining, and commercial NAAT sensitivity and
specificity.

According to the established methodological standards for
evaluation of diagnostic tests,8 four aspects of study quality
were examined: cohort assembly (population of recruitment,
method of sample selection, data collection modality),
technical quality of reference test (the use of at least two
different culture media was considered a more reliable
reference test), blinding, and study population features
(clinical/demographic characteristics, pulmonary TB severity,
and other diagnoses in subjects without pulmonary TB).
The original studies in which data were collected (or
primary studies) were classified according to whether each
characteristic was present, absent, or unknown. In five
multicentre studies the participating laboratories used
different AFB staining and/or culture procedures: these items
were scored as unknown. Three studies included a separate

description of a subgroup of patients on antituberculous
therapy: these data were not included in our analysis and the
studies were scored as not including patients under
treatment.

Statistical analysis
All statistical analyses were separately performed for AFB+
and AFB2 samples. For each study we classified the
commercial NAAT results as true positives (TP), false
negatives (FN), false positives (FP), and true negatives
(TN) as determined by comparison with MTB culture results.
We then calculated the true positive rate (TPR = TP/
TP+FN = sensitivity), the true negative rate (TNR = TN/
FP+TN = specificity), their odds (oddsTPR = TPR/12TPR
and oddsTNR = TNR/12TNR), and the diagnostic odds ratio
(DOR)—that is, the ratio of the odds of a positive NAAT
result among MTB culture positive samples compared with
MTB culture negative samples (DOR = oddsTPR/oddsFP
rate). Thus, DOR values of .1 indicate good test performance
while DOR values of ,1 indicate a test more frequently
positive on control subjects (DOR = 1 means that the test had
no discriminating ability).

The potential problems in odds calculations associated
with sensitivities and/or specificities of 100% were solved by
adding 0.5 to zero values.9 In articles where two or more
different commercial NAATs were analysed on the same
samples, both extraction of data and calculation of accuracy
measures were performed by considering them as separate
studies.

To delineate the impact of study characteristics on
diagnostic accuracy estimates, we fitted a multivariate
random effect regression model using DOR as the dependent
variable and study characteristics as explanatory variables
(‘‘Metareg’’, Stata 8). Since each commercial NAAT fixes a
well defined numerical value as the criterion for positivity, we
took into account the threshold differences between studies
by simply adding the test type as covariate in the regression
model.9

However, clinical interpretation of DOR is not easy as the
same values can relate to different combinations of sensitivity
and specificity.10 The use of fixed thresholds allowed us to
explore the impact of the study characteristics (including the
different thresholds chosen) on sensitivity and specificity
separately. We therefore constructed two further regression
models using, as dependent variables, oddsTPR and
oddsTNR, respectively. For all the models the dependent
variables were included after logarithmic transformation.

As explanatory variables we added the clinical and
methodological characteristics of the primary studies to the
regression models. Since unreported items can reflect true
methodological flaws or poor reporting of a methodologically
sound study, we only included variables with a percentage of
unreported items of ,15%. As it is known that sensitivity and
specificity vary with disease prevalence when an imperfect
standard is used to evaluate a test, we added to the models
the proportion of MTB culture positive samples (among AFB+
or AFB2 samples) as a proxy of the true prevalence of
pulmonary TB.11 12

The within-study variance was considered by taking
weights equal to the inverse of the variance of the appropriate
proportions; the between-study variance was estimated using
the restricted maximum likelihood estimate (REML).13

We assessed the possibility of publication bias by evaluat-
ing a funnel plot for asymmetry, Begg’s adjusted rank
correlation test and Egger’s regression asymmetry test
(‘‘Metabias’’, Stata 8). Finally, we applied Bayes’ theorem
to assess the changes in probability of pulmonary TB
determined by the use of commercial NAATs.
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RESULTS
Study description and synthesis
The study selection process, which is reported in full in the
online Appendix available at http://www.thoraxjnl.com/sup-
plemental, led to the inclusion of 63 journal articles
published between 1995 and 2004.14–76 Since eight articles
analysed two different commercial NAATs, a total of 71
studies were available for analysis. The commercial NAATs
evaluated were: Roche Amplicor MTB (n = 25 studies), its
entirely automated version, Cobas Amplicor MTB (n = 10), E-
MTD (n = 14), BDProbeTecET (n = 12), and LCx (n = 10).
Overall, the 63 articles examined 51 160 samples, 5729 MTB
culture positive and 45 431 MTB culture negative. The
median number of samples per study was 410 (interquartile

range (IQR) 247–662), with a median pulmonary TB
prevalence of 0.14 (IQR 0.07–0.3).

Fifty six articles analysed both sensitivity and specificity of
commercial NAATs on AFB+ samples. They included 3848
MTB culture positive and 1535 MTB culture negative
samples, with a median pulmonary TB prevalence of 0.77
(IQR 0.6–0.86). Five articles reviewed two commercial NAATs
each, so 61 studies were available for analysis. As shown in
fig 1A, sensitivity values were homogeneously higher (0.96,
95% CI 0.956 to 0.968) while specificity was lower and
extremely variable (0.85, 95% CI 0.84 to 0.87).

The 60 articles examining the sensitivity and specificity of
commercial NAATs on AFB2 samples included 1704 MTB
culture positive and 43 852 MTB culture negative samples
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Figure 1 Individual study estimates of sensitivity and specificity of commercial nucleic acid amplification tests (NAATs) for the diagnosis of pulmonary
TB on (A) AFB+ samples and (B) AFB2 samples. Pooled values were calculated using a random effect model. Error bars represent 95% confidence
intervals. Five articles on AFB+ samples and eight articles on AFB2 samples analysing two commercial NAATs each are cited twice.

Table 1 Pooled values* (95% confidence intervals) of diagnostic odds ratio (DOR), sensitivity, and specificity of five
commercial nucleic acid amplification tests (NAATs)

Test
NAA
method

AFB+ AFB2

DOR Sensitivity Specificity DOR Sensitivity Specificity

Amplicor PCR 117 (56 to 246) 0.96 (0.94 to 0.97) 0.83 (0.8 to 0.86) 77 (51 to 115) 0.61 (0.57 to 0.65) 0.97 (0.968 to 0.974)
Cobas Amplicor PCR 99 (56 to 173) 0.96 (0.95 to 0.97) 0.74 (0.68 to 0.8) 220 (144 to 335) 0.64 (0.59 to 0.69) 0.993 (0.992 to 0,994)
BDP SDA 181 (39 to 834) 0.98 (0.96 to 0.99) 0.89 (0.84 to 0.93) 96 (53 to 175) 0.71 (0.66 to 0.76) 0.97 (0.964 to 0.974)
E-MTD TMA 314 (99 to 995) 0.97 (0.95 to 0.98) 0.96 (0.93 to 0.97) 157 (48 to 510) 0.76 (0.7 to 0.8) 0.97 (0.966 to 0.974)
LCx LCR 42 (12 to 142) 0.96 (0.94 to 0.98) 0.71 (0.64 to 0.78) 71 (38 to 132) 0.57 (0.5 to 0.64) 0.98 (0.978 to 0.985)

PCR, polymerase chain reaction; SDA, strand displacement amplification; TMA, trascription mediated amplification; LCR, ligase chain reaction; DOR, diagnostic odds ratio.
*Random effect model.

Diagnostic accuracy of nucleic acid amplification tests 785

www.thoraxjnl.com



(median pulmonary TB prevalence 0.042, IQR 0.02–0.1).
Eight articles reviewed two commercial NAATs each, bringing
the total number of studies up to 68. Inspection of the forest
plot in fig 1B indicates a high specificity but a clear
heterogeneity in sensitivity values. Pooled sensitivity and
specificity were 0.66 (95% CI 0.63 to 0.68) and 0.98 (95% CI
0.978 to 0.981), respectively. Pooled values of DOR, sensitiv-
ity, and specificity for each test type as well as their respective
nucleic acid amplification techniques are reported in table 1.

Analysis of clinical and methodological characteristics of
the primary studies (table 2) showed that many studies did
not comply with the published guidelines for conducting and
reporting diagnostic test evaluation. With regard to MTB
culture (most frequently Lowenstein-Jensen (68%) and
Bactec 12B (52%)), we found that 11% of primary studies
did not provide any description of the reference test used to
assess pulmonary TB diagnosis, while approximately one
quarter used only one culture medium. Even if more than

half of the studies declared the enrollment of patients with
suspected pulmonary TB, they often included samples from
patients on antituberculous treatment. The clinical spectrum
of both pulmonary TB and comparative groups was rarely
given and only nine primary studies applied either single or
double blinding for test interpretation.

Effect of study characteristics on diagnostic accuracy
of commercial NAATs
The characteristics of the studies analysing AFB+ and AFB2

samples are shown in the last two columns of table 2. Those
included in the meta-regression models as potential sources
of heterogeneity were quality of reference test, specimen type,
commercial NAAT type, and pulmonary TB prevalence. In
table 3 the resulting parameter estimates of these variables
are presented as relative odds. Relative odds indicate the
diagnostic performance of commercial NAATs in studies with

Table 2 Analysis of the methodological characteristics of the primary studies included in
the meta-analysis

Characteristic

Number of studies (%)

All
(n = 63)

AFB+ samples
(n = 56)

AFB2 samples
(n = 60)

Type of respiratory specimen
Sputum 8 (13) 6 (11) 8 (13)
Bronchial secretions 1 (2) 0 1 (2)
Mixed respiratory secretions 54 (86) 50 (89) 50 (83)

AFB method
Fluorescence 45 (71) 43 (77) 42 (70)
Carbolfuchsin 7 (11) 3 (5) 7 (12)
Unreported 11 (17) 10 (18) 11 (18)

Quality of reference test
At least two culture media 41 (65) 38 (68) 38 (63)
One culture media 15 (24) 11 (20) 15 (25)
Unreported 7 (11) 7 (13) 7 (12)

Commercial NAAT used
Amplicor 25 22 22
Cobas Amplicor 10 8 10
BDProbeTecET 12 10 12
E-MTD 14 12 14
LCx 10 9 10

Population of recruitment
MTB culture or suspected PTB 29 (46) 27 (48) 27 (45)
High PTB suspicion 3 (5) 3 (5) 3 (5)
Suspected PTB or treatment monitoring 10 (16) 9 (16) 10 (17)
Other 5 (8) 4 (7) 4 (7)
Screening 3 (5) 3 (5) 3 (5)
Unreported 13 (21) 10 (18) 13 (22)

On anti-TB treatment
Yes 31 (49) 29 (52) 31 (52)
No 15 (24) 12 (21) 14 (23)
Unreported 20 (32) 15 (27) 18 (30)

Method of sample selection
Consecutive or random selection 20 (32) 17 (30) 20 (33)
Case control 5 (8) 5 (9) 4 (7)
Consecutive/case control 1 (2) 1 (2) 1 (2)
Unreported 37 (59) 33 (59) 35 (58)

Data collection modality
Prospective 8 (13) 7 (13) 8 (13)
Retrospective 5 (8) 4 (7) 5 (8)
Prospective/retrospective 2 (3) 2 (4) 2 (3)
Unreported 48 (76) 43 (77) 45 (75)

Independence of observation
Any blinding 10 (16) 7 (13) 9 (15)
Unreported 53 (84) 49 (88) 51 (85)

Clinical/demographic characteristics
Reported 3 (5) 3 (5) 3 (5)
Unreported 60 (95) 53 (95) 57 (95)

Distribution of TB severity
Results of quantitative culture reported 7 (11) 7 (13) 7 (12)
Unreported 56 (89) 49 (88) 53 (88)

Other diagnoses in the control group
Reported 1 (2) 1 (2) 1 (2)
Unreported 62 (98) 55 (98) 59 (98)

PTB, pulmonary tuberculosis.
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that characteristic, relative to their performance in studies
without that characteristic.

For AFB+ samples, studies using at least two MTB culture
media and those including bronchial specimens yielded DOR
values approximately eight times higher than those using one
culture media and six times higher than those analysing
sputum specimens only, mainly due to an effect on oddsTNR.
OddsTNR values were inversely correlated with the preva-
lence of pulmonary TB and were significantly lower in studies
of the LCx test than in those analysing E-MTD. For AFB2

samples, the relative DOR of studies using at least two MTB
culture media were more than twice as high as those of
studies using only one medium, mainly due to the increase in
oddsTNR. The inclusion of bronchial specimens was also
associated with increased oddsTNR values. In comparison
with studies analysing E-MTD, those using LCx or Roche
Amplicor MTB provided lower oddsTPR, while those using
Cobas Amplicor MTB yielded higher oddsTNR. An inverse

correlation between the prevalence of pulmonary TB and
both DOR and oddsTNR values was also found.

Evaluation of publication bias showed that the Egger’s test
was significant both for studies on AFB+ samples (regression
coefficient 1.14, p = 0.011) and for AFB2 samples (regression
coefficient 0.97 p = 0.022). Visual inspection of the two
funnel plots also showed some asymmetry. Conversely, the
Begg’s test was not significant (see Appendix).

Post-test probability of pulmonary TB
Changes in the likelihood of pulmonary TB after performing
the commercial NAATs are shown for all pre-test probabilities
in fig 2A and B for AFB+ and AFB2 samples. The top curves
portray the positive predictive values—that is, the probabil-
ities of pulmonary TB after obtaining a positive commercial
NAAT result. The bottom curves represent the inverse of the
negative predictive values—that is, the probabilities of
pulmonary TB after a negative commercial NAAT result. For

Table 3 Effect of study characteristics on estimates of diagnostic odds ratio (DOR), sensitivity, and specificity, as determined by
meta-regression analysis

Study characteristic
Relative DOR
(95% CI) p value

Relative oddsTPR
(95% CI) p value

Relative oddsTNR
(95% CI) p value

AFB+ samples
At least 2 culture media used 8.13 (2.59 to 25.49) 0.000 1.64 (0.90 to 3.00) 0.106 2.82 (1.04 to 7.68) 0.042
PTB prevalence 0.09 (0.01 to 1.72) 0.111 0.61 (0.12 to 3.10) 0.551 0.08 (0.01 to 0.96) 0.046
Inclusion of bronchial samples 6.67 (1.36 to 32.63) 0.019 0.66 (0.22 to 1.97) 0.495 5.40 (1.55 to 18.79) 0.008
Amplicor 0.87 (0.23 to 3.32) 0.838 1.08 (0.56 to 2.09) 0.812 0.54 (0.17 to 1.73) 0.297
Cobas Amplicor 0.52 (0.11 to 2.43) 0.405 1.22 (0.56 to 2.6) 0.620 0.43 (0.11 to 1.72) 0.234
BDProbeTecET 0.84 (0.17 to 4.06) 0.831 2.20 (0.91 to 5.30) 0.080 0.57 (0.15 to 2.25) 0.424
LCx 0.24 (0.05 to 1.07) 0.062 1.06 (0.48 to 2.32) 0.893 0.20 (0.05 to 0.75) 0.017

AFB2 samples
At least 2 culture media used 2.26 (1.13 to 4.53) 0.021 0.97 (0.65 to 1.47) 0.895 2.77 (1.63 to 4.73) 0.000
PTB prevalence 0.02 (0.00 to 0.66) 0.028 0.45 (0.10 to 2.16) 0.322 0.01 (0.00 to 0.23) 0.003
Inclusion of bronchial samples 1.79 (0.68 to 4.70) 0.238 0.63 (0.35 to 1.16) 0.138 2.58 (1.24 to 5.37) 0.011
Amplicor 0.91 (0.36 to 2.27) 0.839 0.47 (0.28 to 0.79) 0.005 1.90 (0.93 to 3.89) 0.081
Cobas Amplicor 1.67 (0.58 to 4.82) 0.342 0.63 (0.35 to 1.13) 0.119 2.48 (1.07 to 5.76) 0.034
BDProbeTecET 0.89 (0.34 to 2.32) 0.815 0.79 (0.45 to 1.38) 0.404 1.18 (0.56 to 2.48) 0.670
LCx 0.61 (0.22 to 1.68) 0.338 0.44 (0.24 to 0.81) 0.008 1.20 (0.55 to 2.59) 0.649

Results are expressed as relative odds and 95% confidence intervals.
DOR, diagnostic odds ratio; TPR, sensitivity; TNR, specificity; PTB, pulmonary tuberculosis.
The coding used in multiple regression analysis was: sample type, inclusion of bronchial specimens = 1, sputum only = 0; MTB culture, at least two media used = 1,
no information on culture media used = 1 (not reported in the table), one culture medium used = 0; cNAAT type, Amplicor = 1, Cobas Amplicor = 1, BDP = 1,
LCx = 1, E-MTD = 0.
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example, using E-MTD on an AFB2 sample from a patient in
whom previous diagnostic information (history taking,
clinical examination, imaging, etc) indicated a probability
of pulmonary TB of about 30%, a negative result would
reduce the likelihood of pulmonary TB to about 10% while a
positive one would increase it to about 90%.

DISCUSSION
Since commercial NAATs require fewer technical skills and a
shorter assay time than the less expensive home grown tests,
they have become the most frequently used molecular tests
for laboratory diagnosis of pulmonary TB.77 In this meta-
analysis we calculated pooled estimates of their sensitivity
and specificity (table 1), showed that their reported accuracy
is influenced by primary study characteristics, and analysed
to what degree or under what conditions they add informa-
tion to the diagnostic work-up of pulmonary TB.

The reference test used for diagnosing pulmonary TB was
shown to have the largest impact on accuracy, both for AFB+
and AFB2 samples. Since the incorporation of one or more
additional units of medium is known to reduce the false
negative rates of culture,78 it could, as a consequence, have
determined an ‘‘artificial’’ improvement in commercial NAAT
specificity that is estimated on samples classified by culture
as MTB-free.

The small number of studies using liquid media as the only
reference test did not allow us to evaluate the independent
effect on accuracy of their higher MTB recovery rates
compared with solid media.78

The imperfect sensitivity of culture could also explain the
variation in the specificity (and the DOR) of commercial
NAATs with the prevalence of TB. At a low prevalence, the
number of samples containing MTB (but wrongly classified
by culture as MTB-free) is in fact likely to be small and
commercial NAAT (pseudo) false positives are likely to occur
less frequently. However, at a high prevalence, the higher
number of (pseudo) false positives reduces the specificity.12

The higher accuracy in studies including bronchial
samples, already reported in a previous meta-analysis on
PCR-based NAATs,6 was mainly due to an increase in
specificity. However, since the reported culture yield in
bronchial samples varies from 12% to 87%,79 80 it is difficult
to explain these data on the basis of the proportional
agreement of positive and negative results between the two
tests. Studies focused on diagnostic performance of both
culture and commercial NAATs on different bronchial
samples may help to clarify this issue in the future.

Although only Amplicor (or Cobas Amplicor) and E-MTD
are currently approved by the United States FDA for clinical
use, the test type did not seem to explain the heterogeneity of
DOR in meta-regression. Interestingly, studies evaluating E-
MTD on AFB2 samples yielded higher sensitivities and lower
specificities than those using Roche Amplicor MTB or Cobas
Amplicor MTB (table 3). The higher sensitivity of E-MTD, the
only NAAT approved by the FDA for use on AFB2 samples,
could be due to kit features such as the use of ribosomal RNA
as a target sequence (about 2000 copies in each MTB cell),81

but our results suggest that E-MTD could use a lower
positivity criterion than other commercial NAATs and the
differences observed could be partly due to a ‘‘threshold
effect’’. The accuracy of E-MTD appeared to be higher than
that of the recently withdrawn Abbott LCx, while no
differences were seen with BDProbeTecET.

With respect to the diagnostic value of commercial NAATs
in the evaluation of patients with suspected pulmonary TB,
we observed that, because of their very high sensitivity on
AFB+ samples, commercial NAATs can be confidently used to
‘‘rule out’’ pulmonary TB in AFB+ patients (fig 2A). Thus,
particularly in settings where opportunistic infections are a

concern, a negative inhibitor-free commercial NAAT in
patients with AFB+ smears and suggestive radiographic
abnormalities should direct suspicion towards an environ-
mental mycobacterial pulmonary disease.

The more limited gain in likelihood of pulmonary TB after
a positive result on AFB+ samples (particularly for some
commercial NAATs, see fig 2) seems to limit their use as
confirmatory tests in these cases. The increased false positive
rates of a number of studies may be related to the inclusion of
samples from patients under treatment. These studies tried to
correct the errors deriving from the enrollment of an
inadequate study population by applying discrepant analysis,
a statistical ploy that attempts to correct sensitivity and
specificity of a ‘‘new’’ test (that is supposed to be more
accurate than the reference standard it is compared with) by
involving an additional more reliable test (clinical diagnosis
of pulmonary TB). This procedure, by correcting the errors
hidden among conflicting results of the ‘‘new’’ test and the
standard and by disregarding concordant errors, leads to an
overestimation of the accuracy of the test.82 We therefore
decided to include only ‘‘uncorrected’’ results, hence discuss-
ing the possible effects on accuracy of the presence of
samples from treated patients. The unavailability of treat-
ment data from 27% of primary papers prevented us from
drawing conclusions by means of meta-regression.
Nevertheless, the pooled specificities calculated on the
subgroup of studies clearly stating the exclusion (n = 206
samples) and inclusion (n = 707 samples) of treated patients
were 0.97 (95% CI 0.93 to 0.99) and 0.76 (95% CI 0.73 to
0.79), respectively, indicating that inclusion of treated patient
samples was the main cause for reduced specificity in AFB+
samples.

In the case of a negative microscopy result, commercial
NAATs are not sensitive enough to exclude the diagnosis of
pulmonary TB and further diagnostic work-up remains
mandatory in these patients. By contrast, their high
specificity gives them the ability to ‘‘rule in’’ pulmonary TB
in about two thirds of patients who will be recognised as
MTB culture positive only 2–8 weeks later (fig 2B). Based on
the degree of suspicion, the clinician is allowed to initiate
treatment or, having already begun it, is made more
comfortable to continue it. Furthermore, and with regard to
the risk assessment of infectivity, because commercial NAATs
have a higher sensitivity than microscopy, they could guide
the decision as to which AFB2 patients are to be segregated,
especially in facilities where HIV infected or other immuno-
compromised individuals are managed.83 However, this use is
of limited value in patients already started on treatment as
the numbers of viable mycobacteria in the sputum are known
to dramatically fall in the first few days.84

This meta-analysis has limitations. Firstly, the sensitivity
and specificity estimates of commercial NAATs are hindered
by the poor quality of primary studies, a common problem in
diagnostic meta-analyses. Furthermore, although the Egger’s
test may reveal artifactual correlations between DOR and its
variance regardless of publication bias,85 86 the possibility that
the studies included in our meta-analysis are a biased set
cannot be ruled out. In spite of these drawbacks, we think
that summary estimates of test performance are a more
accurate guide for the physician than the results of any one of
the primary studies.

Secondly, our decision to use the specimen as the unit of
analysis could have affected accuracy because of the possible
inclusion of multiple paucibacillary specimens from AFB2

patients. Nevertheless, we speculated that the use of the
patient as unit of analysis could have determined even wider
variations in accuracy as the number of specimens per patient
varied both within and between primary studies and
repetitive testing is known to improve sensitivity.
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Thirdly, we examined the accuracy of commercial NAATs
in comparison with culture, without addressing the issue of
microscopy-negative and culture-negative pulmonary TB
cases diagnosed on clinical grounds only. During the
systematic review of the literature we found only six studies
and one FDA premarket approval application document
confronting this problem.81 87–92 Out of 69 specimens (52
patients), only seven provided at least one specimen that
tested positive with commercial NAATs, corresponding to a
pooled sensitivity of 10% (95% CI 4 to 20). Our estimates of
sensitivity on AFB2 samples are therefore probably inflated
compared with what can be seen in the clinical setting.

Based on this systematic review, the clinical use of
commercial NAATs should be limited to the exclusion of a
diagnosis of TB in AFB+ patients with suspected non-
tuberculous mycobacterial infection and to the confirmation
of TB in a percentage of those providing AFB2 samples.
Further studies using rigorous methods—including careful
control for treatment and use of single specimen per
patient—would be highly desirable to appreciate better the
operating characteristics of the commercial NAATs. Their
accuracy on different bronchial specimens and on samples
from patients with culture negative pulmonary TB are also
important issues that remain to be addressed.

Full details of the study selection process are
shown in the online Appendix available at
http://www.thoraxjnl.com/supplemental.
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